The Schwarz – Pick theorem and its applications
نویسندگان
چکیده
Various derivative estimates for functions of exponential type in a half-plane are proved in this paper. The reader will also find a related result about functions analytic in a quadrant. In addition, the paper contains a result about functions analytic in a strip. Our main tool in this study is the Schwarz–Pick theorem from the geometric theory of functions. We also use the Phragmén–Lindelöf principle, which is of course standard in such situations.
منابع مشابه
Fan-KKM Theorem in Minimal Vector Spaces and its Applications
In this paper, after reviewing some results in minimal space, some new results in this setting are given. We prove a generalized form of the Fan-KKM typetheorem in minimal vector spaces. As some applications, the open type of matching theorem and generalized form of the classical KKM theorem in minimal vector spaces are given.
متن کاملPeriods for Holomorphic Maps via Lefschetz Numbers
In this note we are concerned with fixed point theory for holomorphic self maps on complex manifolds. After the well-known Schwarz lemma on the unit disk, which assumes a fixed point, the Pick theorem was proved in [8]. This can be extended to a Pick-type theorem on hyperbolic Riemann surfaces as is shown in [5, 7]. For a more general type of space: open, connected and bounded subsets of a Bana...
متن کاملA New Variant of the Schwarz{pick{ahlfors Lemma
We prove a “general shrinking lemma” that resembles the Schwarz– Pick–Ahlfors Lemma and its many generalizations, but differs in applying to maps of a finite disk into a disk, rather than requiring the domain of the map to be complete. The conclusion is that distances to the origin are all shrunk, and by a limiting procedure we can recover the original Ahlfors Lemma, that all distances are shru...
متن کاملFixed point theorem for non-self mappings and its applications in the modular space
In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...
متن کاملA new characterization for Meir-Keeler condensing operators and its applications
Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...
متن کامل